On a curvature flow in a band domain with unbounded boundary slopes
نویسندگان
چکیده
<p style='text-indent:20px;'>This paper is devoted to an anisotropic curvature flow of the form <inline-formula><tex-math id="M1">\begin{document}$ V = A(\mathbf{n})H + B(\mathbf{n}) $\end{document}</tex-math></inline-formula> in a band domain id="M2">\begin{document}$ \Omega : [-1,1]\times {\mathbb{R}} $\end{document}</tex-math></inline-formula>, where id="M3">\begin{document}$ \mathbf{n} id="M4">\begin{document}$ and id="M5">\begin{document}$ H denote respectively unit normal vector, velocity graphic curve id="M6">\begin{document}$ \Gamma_t $\end{document}</tex-math></inline-formula>. We require that id="M7">\begin{document}$ contacts id="M8">\begin{document}$ \partial with slopes equaling heights contact points (which corresponds kind Robin boundary conditions). In spite unboundedness slopes, we are able obtain <i>uniform interior gradient estimates</i> for solutions by using zero number argument. Furthermore, when id="M9">\begin{document}$ t\to \infty show id="M10">\begin{document}$ converges traveling wave cup-shaped profile <i>infinite</i> id="M11">\begin{document}$ C^{2,1}_{\rm{loc}} ((-1,1)\times {\mathbb{R}}) $\end{document}</tex-math></inline-formula>-topology.</p>
منابع مشابه
EXISTENCE OF A STEADY FLOW WITH A BOUNDED VORTEX IN AN UNBOUNDED DOMAIN
We prove the existence of steady 2-dimensional flows, containing a bounded vortex, and approaching a uniform flow at infinity. The data prescribed is the rearrangement class of the vorticity field. The corresponding stream function satisfies a semilinear elliptic partial differential equation. The result is proved by maximizing the kinetic energy over all flows whose vorticity fields are rearra...
متن کاملexistence of a steady flow with a bounded vortex in an unbounded domain
we prove the existence of steady 2-dimensional flows, containing a bounded vortex, and approaching a uniform flow at infinity. the data prescribed is the rearrangement class of the vorticity field. the corresponding stream function satisfies a semilinear elliptic partial differential equation. the result is proved by maximizing the kinetic energy over all flows whose vorticity fields are rearra...
متن کاملA Combinatorial Curvature Flow for Compact 3-manifolds with Boundary
We introduce a combinatorial curvature flow for piecewise constant curvature metrics on compact triangulated 3-manifolds with boundary consisting of surfaces of negative Euler characteristic. The flow tends to find the complete hyperbolic metric with totally geodesic boundary on a manifold. Some of the basic properties of the combinatorial flow are established. The most important one is that th...
متن کاملMean curvature flow with free boundary outside a hypersphere
The purpose of this paper is twofold: first, to establish sufficient conditions under which the mean curvature flow supported on a hypersphere with exterior Dirichlet boundary exists globally in time and converges to a minimal surface, and second, to illustrate the application of Killing vector fields in the preservation of graphicality for the mean curvature flow with free boundary. To this en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2021
ISSN: ['1553-5231', '1078-0947']
DOI: https://doi.org/10.3934/dcds.2021115